
www.manaraa.com

Softw Syst Model (2014) 13:1529–1552
DOI 10.1007/s10270-013-0385-x

REGULAR PAPER

Transformation challenges: from software models to performance
models

Murray Woodside · Dorina C. Petriu · José Merseguer ·
Dorin B. Petriu · Mohammad Alhaj

Received: 12 September 2011 / Revised: 29 January 2013 / Accepted: 25 September 2013 / Published online: 31 October 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract A software model can be analysed for non-
functional requirements by extending it with suitable anno-
tations and transforming it into analysis models for the
corresponding non-functional properties. For quantitative
performance evaluation, suitable annotations are standard-
ized in the “UML Profile for Modeling and Analysis of
Real-Time Embedded systems” (MARTE) and its predeces-
sor, the “UML Profile for Schedulability, Performance and
Time”. A range of different performance model types (such
as queueing networks, Petri nets, stochastic process algebra)
may be used for analysis. In this work, an intermediate “Core
Scenario Model” (CSM) is used in the transformation from
the source software model to the target performance model.
CSM focuses on how the system behaviour uses the system
resources. The semantic gap between the software model and
the performance model must be bridged by (1) information
supplied in the performance annotations, (2) in interpreta-
tion of the global behaviour expressed in the CSM and (3)
in the process of constructing the performance model. Flex-

Communicated by Prof. Hans Vangheluwe.

M. Woodside · D. C. Petriu (B) · D. B. Petriu · M. Alhaj
Department of Systems and Computer Engineering, Carleton
University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
e-mail: Dorina.Petriu@sce.carleton.ca

M. Woodside
e-mail: cmw@sce.carleton.ca

D. B. Petriu
e-mail: dorin@sce.carleton.ca

M. Alhaj
e-mail: malhaj@sce.carleton.ca

J. Merseguer
Departamento de Informática e Ingeniería de Sistemas,
Universidad de Zaragoza, Zaragoza, Spain
e-mail: jmerse@unizar.es

ibility is required for specifying sets of alternative cases, for
choosing where this bridging information is supplied, and
for overriding values. It is also essential to be able to trace
the source of values used in a particular performance esti-
mate. The performance model in turn can be used to verify
responsiveness and scalability of a software system, to dis-
cover architectural limitations at an early stage of develop-
ment, and to develop efficient performance tests. This paper
describes how the semantic gap between software models in
UML+MARTE and performance models (based on queueing
or Petri nets) can be bridged using transformations based on
CSMs, and how the transformation challenges are addressed.

Keywords Software performance · Performance analysis ·
Model transformation · UML · MARTE profile · Layered
queueing networks

1 Introduction

Model-driven engineering (MDE) uses abstraction to sep-
arate the model of the software from underlying platform
models, and automation to generate code from models. Mod-
els also facilitate the analysis of non-functional properties
(NFPs), such as performance, scalability, reliability, security,
safety. MDE can be applied to a variety of models related to
software, including workflow models. To evaluate a software
model for NFPs, analysis models are ideally generated auto-
matically by model transformations and become part of the
model suite which is maintained with the product. This paper
describes a framework called PUMA (Performance from
Unified Model Analysis) that automatically derives a variety
of performance models from UML software specifications.

For software performance evaluation, many modelling
formalisms have been developed over the years, such as

123

www.manaraa.com

1530 M. Woodside et al.

queueing networks (QNs), Layered Queueing Networks
(LQN) (a type of extended QN), stochastic Petri nets, sto-
chastic process algebras and stochastic automata networks,
as surveyed in [2]. Simulation is also widely used. This paper
addresses the creation of software models in UML [25], for
systems with stochastic workloads, to obtain performance
measures such as capacity, throughput and response times.
For brevity, we term the software models as Smodels, and the
performance models as Pmodels.

The benefits of using Pmodels during the software devel-
opment process include discovery of performance limitations
in system architecture, scalability analysis, design of effi-
cient performance tests, capacity planning for deployed sys-
tems, and model-based configuration optimization [8,16,40].
There is a well-established methodology called software per-
formance engineering [34–36] using Pmodels derived from
expert knowledge or from test data, throughout the software
lifecycle. Unfortunately, its practical application is some-
times hindered by the effort of building the performance
models by hand. PUMA is intended to automate this step.

To facilitate the generation of Pmodels, UML Smodels
have been extended with standard performance annotations
defined in the “UML Profile for Modeling and Analysis
of Real-Time and Embedded Systems” (MARTE) [24] and
its predecessor the “UML Profile for Schedulability, Per-
formance and Time” (SPT) [26]. The PUMA framework
(first developed by the authors for UML+SPT models [41])
integrates Pmodels into MDE as illustrated in Fig. 1. (The
numbered circles represent different transformation steps
required to bridge the gap between Smodel and Pmodel, as
described in Sect. 3).

This paper describes a new version of PUMA for
UML+MARTE models, which addresses the following trans-
formation challenges:

Fig. 1 The PUMA architecture, with four steps discussed in the paper

• bridging the semantic gap between Smodels and Pmodels,
which is due to their different domains; performance mod-
els are centred on resources and abstract away from details
of function and data [28];

• overcoming the complexity of dealing with several distinct
kinds of Smodel and many kinds of Pmodel (an N-by-M
problem);

• inferring behaviour patterns over extended patches of sys-
tem scenarios, including patterns of interaction
between system components, and patterns of resource
holding, which require determination of resource contexts
of behaviour [43];

• incorporating system elements which are indicated but not
fully described in the Smodel.

These transformations are largely implemented in PUMA,
covering Smodels expressed by Interaction, Activity and
Deployment Diagrams (IDs, ADs, and DDs) and Pmodels
in the form of QNs, LQNs, generalized stochastic Petri nets
(GSPNs) and simulations. In this paper, we will focus on the
transformation to two types of Pmodels, LQNS (Sect. 7) and
Petri nets (Sect. 8).

PUMA addresses the N-by-M challenge by using an inter-
mediate CSM model as illustrated in Fig. 2. CSM captures the
necessary information about the use of resources by behav-
iour, which is the essence of all performance models. Now,
to add a new type of Smodel or Pmodel requires only one
additional transformation into or from CSM.

2 Related work

Many kinds of Pmodels can be used for performance analysis
of software systems as described in [2] and [8]. The Pmodels
are often constructed “by hand”, based on analyst insights
and interactions with designers. To fit into MDE, the present
purpose is to automate the derivation of the Pmodel from the
Smodel used for software development. Several approaches
have been proposed for this.

In some research, a special restricted style of “perfor-
mance Smodel” has been proposed, to specify only the
software aspects that are relevant to performance models.
An example is the pioneering “execution graph” of Smith
[35,36], a kind of scenario model (as described in Sect. 4)
with performance parameters. The execution graph, which
may have a UML front-end [7,21], is transformed directly to a
Pmodel. Other examples of “performance Smodels” include
a constrained style of UML [18], including annotated struc-
tural definitions in code [22] and the Palladio Component
Model (PCM) [3]. The latter is a modelling language intended
for model-driven development of component-based software
systems and for the early evaluation of NFPs such as per-
formance and reliability, which captures the software archi-

123

www.manaraa.com

Transformation challenges 1531

Fig. 2 Transformation architecture using the CSM intermediate model

Table 1 Automated
transformation of UML
Smodels to Pmodels

UC use case, SD sequence
diagram, AD activity diagram,
SM state machine, DD
deployment diagram

Target Pmodel Source Smodel

UC + DD SD + DD AD + DD SM + DD

Queueing network [7,14] [7,14,41] [14,21,41]

Layered QN [14,18,27,41] [14,27,29,41]

Stochastic Petri net [9] [9,14,41] [9,14,20,23,41] [9,17]

Stochastic process algebra [39] [6]

Markov model [19]

Simulation [1,27] [21,27]

tecture with respect to static structure, behaviour, deploy-
ment/allocation, resource environment/execution environ-
ment, and usage profile. Although its metamodel is com-
pletely different from UML, the Palladio Component Model
has a UML-like graphical notation representing component
diagrams, deployment and individual service behaviour mod-
els (similar to activity diagrams).

The capabilities provided by some of the extensive
research on automated transformation of UML Smodels to
different PModels are summarized in Table 1, with references
to papers.

Many of these approaches transform from one kind of
UML behaviour diagram (plus deployment), to one kind of
Pmodel. However, there are many benefits in being able to
start from any kind of UML behaviour diagram and to choose
the most suitable Pmodel for a given project. The PUMA
strategy in [41] unifies performance evaluation in this sense,
transforming multiple types of UML behaviour model into
multiple types of Pmodel, via an intermediate (or pivot) lan-
guage called Core Scenario Model (CSM) [30]. PUMA is
capable of transformations in every cell of Table 1 and also
supports non-UML Smodels (e.g. Use Case Maps [46]).

CSM represents sequences of operations, based on the
concepts in the SPT/MARTE profiles, and exploits several
standards: MARTE; UML and its model-interchange stan-
dard; performance model standards [15,33]; and the CSM
metamodel [30]. Other intermediate models from literature

include IM in [27] and PCM in [9], which are similar to CSM.
KLAPER is another intermediate language that supports per-
formance and reliability analysis of component-based sys-
tems [14]. KLAPER is more oriented towards representing
calls and services rather than scenarios and has a more limited
view of resources (i.e. no basic distinction between hard-
ware/software, active/passive). It has also been applied as
intermediate model for transformation from different types
of Smodels to different types of Pmodels.

For PUMA, the preliminary paper [41] outlined transfor-
mations from sequence and activity diagrams extended with
the SPT profile to CSM, and from CSM to queueing, layered
queueing and stochastic Petri net models. The limitations in
these original transformations mean that some valid designer
options for expressing the Smodel cause failure to produce
a Pmodel. This work describes a significantly enhanced
PUMA framework based on MARTE, which addresses the
transformation challenges listed in the Sect. 1 and detailed
in Sect. 3.

3 Bridging the semantic gap between Smodel
and Pmodel

The Smodel contains a wealth of design specification that
is summarized or ignored in the Pmodel, and the Pmodel
extends outside the normal content of an Smodel, in its focus

123

www.manaraa.com

1532 M. Woodside et al.

Fig. 3 Conceptual groupings of the semantic content of the Smodel
and Pmodel

on the use of resources. There is overlap in the structural,
behavioural and resource specifications that are common to
both, but their central features are quite separate, creating a
semantic gap between them. The Smodel is function-centric,
while the Pmodel is resource-centric. This gap is crossed by
using the common elements, which describe the resources
and the units of behaviour that use these resources (called
steps in this work). Starting from a typical Smodel, tone must
first complete the description of behaviour and the execu-
tion platform, and then add performance annotations which
specify how the behaviour uses the resources in executing
the functions, and perhaps some additional resources. The
relationships between the elements of a UML Smodel and
its corresponding Pmodel are illustrated as subsets of model
elements in Fig. 3.

SBR is the subset of the Smodel model elements that
specifies behaviour and its use of resources, while BRusage
is the subset of SBR that is related to the usage profile
for the Pmodel (the set of system-level responses that is to
be modelled). The Pmodel is extracted from BRusage plus
additional specifications of system components outside the
Smodel altogether, shown as Pext.

The Pmodel is more abstract than the Smodel [28]:

• functional operations are abstracted using the MARTE
annotations:

– control decisions are abstracted to random choices
governed by probabilities which must be supplied;

– functional execution is represented abstractly by
probability distributions or average demand values
for CPU time, message lengths and sizes of storage
operations.

The parts that are kept are included in the set SBR.

• the effect of data on behaviour is abstracted, since the run-
time data are not represented in the Pmodel. The effect of
variations in the data is represented within the distribution
of demand values noted above;

• some operations may be omitted from the Pmodel. Perfor-
mance analysis focuses on the use cases which are regarded
as important for performance, and for which there are per-
formance requirements, called the usage profile of the sys-
tem. This restricts to the Pmodel to the subset BRusage in
Fig. 3;

• information may have to be added to the model, shown as
set Pext in Fig. 3:

– similar to a transformation to a platform-dependent
model, the performance model must include abstrac-
tions of the execution platform, parts of which may be
ignored in the Smodel (if it is platform-independent).
Examples include middleware, databases and storage
subsystems. These have been termed performance
completions [42] and may be represented by addi-
tional overhead execution demand, or by pre-built
Pmodel elements defined in Pext;

– the system may include components that are already
developed or are separately specified. These may also
be represented by Pmodel elements defined in Pext.

Transformation steps and road map
The paper describes the transformation from SModel to

Pmodel in four steps, indicated by numbered circles in Fig. 1:
Preliminary Step: identify the operations to be analysed

(the usage profile) and ensure that the Smodel includes their
behaviour description;

1. in the Smodel, add the performance annotations using
MARTE stereotypes and attributes, to complete SBR
(MARTE is described in the remainder of this section);

2. extract BRUsage from the Smodel into the CSM, which
eliminates the unused parts of the Smodel (CSM in
Sect. 4, the S2C transformations in Sect. 5);

3. analyse the CSM for extended resource properties (inter-
action patterns and resource use patterns across the sce-
nario; they are needed by the LQN Pmodel, not by the
QN or GSPN Pmodels) (Sect. 6);

4. transform the CSM to the chosen Pmodel (Sect. 7).

The preliminary step and Step 1 are manual, while Steps 2,
3 and 4 are automated in PUMA.

3.1 MARTE performance annotations

UML extensions to specify information about time and
resources, to bridge the semantic gap, are defined in the
MARTE standard profile [24]. Important packages of
MARTE for our purposes are the NFPs, general resource
model (GRM), generic quantitative analysis model (GQAM),
and performance analysis model (PAM). Quantities are spec-
ified by NFPs (non-functional properties), which have a com-

123

www.manaraa.com

Transformation challenges 1533

pact form (value, units), where value may be a number, a vari-
able, or an expression in the Value Specification Language
([24], Annex B), and units are described in Annex D.2. Some
NFP types support ranges of values, or probability distrib-
utions. There is also a long form which specifies additional
properties of the NFP value ([24], sec 8.3.3).

Highlights of MARTE will be introduced via the UML
interaction diagram (ID) and deployment diagram (DD) in
Figs. 4 and 5, which are based loosely on the TPC-W bench-
mark [38] representing an electronic bookstore. The ID in
Fig. 4 defines behaviour to get the home page of the book-
store. This single response will make up the usage profile
for this small example. The stereotype «GaAnalysisContext»
identifies the ID as a subject for analysis and its con-
textParams attribute declares four parameters for the analy-
sis:

• Nusers, the number of concurrent users in a closed work-
load,

• thinkTime, between the end of a response and the next
request by the same user,

• Images, the average number of images in a web page,
• R, the required 95th percentile of the response time.

In the stereotype attributes, the “$” sign signifies the decla-
ration of a variable; NFP_duration is the NFP type for time
values, NFP_integer is for integers. These four parameters
can be varied during the Pmodel evaluation to provide sen-
sitivity analysis.

MARTE stereotypes are based mainly on the concepts of
scenarios, workloads and resources. A scenario is a behav-
iour specified by an AD, ID or state machine diagram (SMD)
(which are not considered here). A scenario is triggered by an
event pattern defining its “workload” and is made up of Steps
which are either elementary actions that take time and use
resources, or containers for nested subscenarios. The soft-
ware process instances (each of which gives one lifeline in
the ID) are logical resources, while the hosts and the net-
work are physical resources shown in the DD of Fig. 5.
Other resources may be active or passive, logical or phys-
ical, software or hardware. In the example, we shall consider
the MARTE annotations for the scenario and workload first,
then consider the resources.

In Fig. 4, the scenario is implicitly the entire ID. Its
workload is defined by the «GaWorkloadEvent» stereotype
applied to the beginning of the scenario, with attributes pat-
tern (describing the events that trigger responses) and respT
(the response time to the event). The pattern defined here is
closed, with a fixed population of Nusers users, who wait
for thinkTime seconds between requests (notice the use of
variables Nusers and thinkTime). An alternative is an open
pattern, defining a flow of requests at a given rate. respT is
defined with two values with different sources, one for the

required value and one defining the variable R as a place-
holder for the calculated value obtained from the Pmodel.
To define the different sources, the long-form specification
of respT is used. The statQ field declares the value to be a
percentile (the 95th in this case).

The scenario is defined implicitly by the sequence of
«PaStep», in which the stereotype may be attached to either
an ExecutionSpecification (drawn as a narrow rectangle along
the lifeline) or to the message which triggers it. A «PaStep»
has an attribute hostDemand which defines its host execution
time. «PaStep» is also applied to the CombinedFragments in
Fig. 4, as a container for an implicit nested scenario repre-
senting the fragment content. «PaStep» has an attribute prob
for the probability of optional or alternative fragments (prob
is 0.2 for the opt fragment, and 0.4 and 0.6 for the two
alt fragments in Fig. 4), or rep for repetitions of a loop
(rep is the number of images to be retrieved, given by the
variable images, for the loop fragment). In a par Com-
binedFragment, the attribute noSync on a fragment indicates
that the joining of the parallel behaviour does not wait for this
branch.

Some messages in the scenario may have an additional
stereotype «PaCommStep» conveying an attribute msgSize,
which may be used in the Pmodel to determine the mes-
sage delay. The first message has a size of 2.7 KB; the
final one has a size given by an expression depending
on the number of images in the homepage (the variable
Images).

The logical resources in this system are the «PaRun
TInstances» (deployed processes) associated with each life-
line in the ID, with thread pools of size poolSize and
an attribute instance that identifies the process instance (a
«SchedulableResource» whose deployment is shown in the
DD). The physical resources are «GaExecHosts» (compute
nodes) and the «GaCommHost» (network). Each «GaExec
Host» has attributes resMult (for its number of cores or
processors), and transmission and reception overheads per
message as shown. The «GaCommHost» has a transmission
capacity and a latency attribute named blockT.

Going beyond this example, a «PaStep» may identify the
invocation of additional behaviour by explicitly nesting a
scenario defined by another behaviour diagram within it,
or by defining demands for operations defined elsewhere
using the «PaStep» attributes behavDemand (for nested
scenarios), servDemand (for operations defined by a soft-
ware component with its own scenarios), or extOpDemand
(for operations defined in a library). Also a scenario may
explicitly define the use of logical resources, with a stereo-
type «PaAcqStep» for a step which acquires a resource, and
«PaRelStep» for a step which releases one.

UML ADs use the same annotations, with «PaStep»
applied to Actions; an example is shown in Fig. 17. State
machine diagrams can also be annotated (see e.g. [20]).

123

www.manaraa.com

1534 M. Woodside et al.

Fig. 4 A UML2 interaction diagram for the GetHomePage scenario of the TPC-W benchmark

123

www.manaraa.com

Transformation challenges 1535

Fig. 5 Software components and their deployment

The many additional annotations in MARTE include iden-
tification of logical resources such as semaphores, locks or
buffer pools. They can be modelled by declaring a logical
resource, where it is acquired and released.

As a minimum input for performance analysis, the anno-
tated Smodel must include:

• the usage of the system, defined by «GaAnalysis Contexts»
which define behaviour, with their «GaWorkloadEvents»
and «PaRunTInstances»;

• annotations for hostDemands of «PaSteps»;
• deployment connecting «PaRunTInstances» to «Schedul-

ableResources» and these to «GaExecHosts»;
• modelling of those logical resources that are expected to

affect performance.

4 Intermediate modelling language: The Core Scenario
Model

The CSM extracts the behaviour and resource information
from the Smodel (called the subset BRusage in Fig. 3) using
a metamodel shown (without attributes) in Fig. 6; details are
described in [30] and its XML schema is available at [31]. The
metamodel is based closely on MARTE, with corresponding
elements as shown in Table 2.

The implicit sequence relationships in the Smodel map
to explicit CSM PathConnectors (Start, Sequence, Branch,
Merge, Fork, Join, End), called PCs here for brevity. Acquisi-
tion and release of process resources are implicit in MARTE
and map to ResourceAcquire and ResourceRelease steps in
CSM.

Figure 7 illustrates the mapping of sequence relationships
and resource operations, using the shorthand ra and rr for
Resource Acquire and Resource Release steps. Other sce-
nario models lack the generality of CSM regarding resource
modelling. For example, execution graphs in [36] indicate
resource acquisition/release for processes and locks, but not
for units of multiple resources like a pool of buffers. PCM [9]
requires that fork/join sections join all branches, and fork/join
and branch/merge sections be fully nested. KLAPER [14] has
a more limited view of resources, considering that hardware
and software resources offer services, which can be detailed
in terms of behaviour. This represents process resources but
not pure logical resources.

Nested subscenarios in MARTE and CSM
MARTE can associate a subscenario with a «PaStep» in

three ways:

1. as a subscenario stereotyped «GaScenario» which refines
the «PaStep»; the step is an abstraction for the subsce-
nario;

2. as a behaviour included in the «PaStep», defined by an
attribute behavDemand, with a repetition count behav-
Count;

3. as the behaviour of a service invoked by the «PaStep» with
a demand servDemand and a repetition count servCount.

Normalized and flattened CSM
A normalized CSM has certain properties which make it

easier to process further:

• there should be a PC between every pair of Steps (including
ResourceAcquire /Release/Pass Steps);

123

www.manaraa.com

1536 M. Woodside et al.

Fig. 6 Simplified Metamodel of the Core Scenario Model

Table 2 Correspondences between MARTE stereotypes and CSM
elements

MARTE CSM

«GaWorkloadEvent» Closed/OpenWorkload

«GaScenario» Scenario

«PaStep» Step

«PaCommStep»a CommStep

«GaResAcq»a ResourceAcquire

«GaResRel»a ResourceRelease

«PaResPass»a ResourcePass

«GaExecHost»b ProcessingResource

«PaCommHost»b ProcessingResource

«PaRunTInstance»b Component

«PaLogicalResource»b LogicalResource

a Subtype of «PaStep» in MARTE
b Subtype of «Resource » in MARTE

• every primitive Step (which excludes ResourceAcquire/
Release/Pass Steps and Steps with nested subscenarios)
should have some nonzero execution demand and an asso-
ciated Component to execute it;

• every Component (essentially, a process) should have an
associated host processor.

A CSM which violates these properties can be normalized
to satisfy them.

One CSM may include several separate independent top-
level scenarios representing different externally available
system operations, each with its own workload to describe
how it is driven. If a top-level scenario is also used as a nested
subscenario, then its workload is ignored when it is nested.
A top-level scenario is flattened by recursively replacing its
steps containing nested subscenarios with instances of the
subscenarios.

5 Transformation from Smodel to Core Scenario Model
(S2C)

One Smodel scenario is transformed at a time, by identifying
a scenario and following it, using the causal implications
from the UML scenario. In an AD, causality is implied by
ActivityEdges between actions, in a SM by state transitions,
but in an ID, causality is more complex and is addressed in
Sect. 5.1. The implemented transformations cover IDs, ADs
and their associated DDs. Instead of a DD, a MARTE user
can define deployments using special allocation stereotypes
(see chapter 11 in [24]).

5.1 Causality and sequence in a UML ID

In UML2, in activity diagrams and state machine diagrams,
the sequence of steps is explicitly defined by transitions
which establish causality. Interaction diagrams, however,

123

www.manaraa.com

Transformation challenges 1537

(a) (b)

Fig. 7 An interaction diagram and the corresponding CSM (with sub-
scenario loopBody). (Notes: «PaRunTI» means «PaRunTInstance».
The CSM uses Roman font for Steps, bold arrows for Sequence Path-
Connectors, and italics for other PathConnectors. “ra/rr: Resource”

specifies a ResourceAcquire/Release Step applied here to a named
PaRunTI process resource). A forked branch that will not re-join is
indicated with {noSync}. a ID, b CSM

only define event traces which must be satisfied in some sense
by the behaviour; there may be events which are not shown in
the ID. Several semantic interpretations of IDs are discussed
in [32], and this work uses the “UML2 interpretation” defined
there.

Transformation of an ID to a performance model treats
the precedence relationships as causal, based on the time
order which is given by their vertical position in the
diagram. An ID is a list of interaction fragments (IFs)
such asMessageEnd, CombinedFragment (CFs), Execution-
Specification, and OccurenceSpecification. Fragment IFa is
inferred as a causal predecessor of IFb in the following con-
ditions:

• if IFa immediately precedes IFb on the same lifeline;
• or if IFa is the event of sending a message and IFb is the

event of receiving the same message.

An IF with no predecessor is a Start fragment; IFs with no
successor are End fragments.

Dubious causality
For a pair of IFs (IFa, IFb), if IFb is a CF with multiple

operands, it may not be possible to infer causality from its
vertical position, and we say the causality is dubious. This is

Table 3 Algorithm for establishing causality between interaction
fragments in an ID

1 If CF has just one operand, or if all first IFs are on the same
lifeline, then the causal predecessor IFa is the last IF
before IFb (the CF) on that lifeline

2 Else if there is only one “active” lifeline with an IF within at
least one operand, IFa is the last IF before the CF, on that
lifeline. A lifeline is termed “active” after receiving a
message, and it becomes “inactive” after a blocking
message send, or the end of an ExecutionInstance

3 Else if CF is par or seq, IFa is taken arbitrarily to be the last
IF before the CF, on those lifelines with an IF within at
least one operand

4 Else the causality is dubious, and IFa is taken arbitrarily to
be the last IF on any lifeline with operand IFs, before the
CF

analysed by the causality inference algorithm in Table 3, by
considering the first IFs within each operand of the CF.

Figure 8 illustrates dubious causality. The first and third
lifelines are both active after the asynchronous message
(equivalent to a fork in the flow). Before the alt CF in the
ID, the previous IF is IFx, and this will be taken as the prede-
cessor. However, it is not clear howIFx causes IFy. IFy must
be caused by means that are hidden in the diagram (such as by
inspection of shared data set by the Printer). Dubious causal-

123

www.manaraa.com

1538 M. Woodside et al.

App PrintService

alt

Printer

IFx

IFy

IFz

Fig. 8 Dubious causality for an alt CombinedFragment (CF)

ity does not prevent building Pmodels, but raises a question
about behaviour completeness in the generated Pmodels.

PathGraph for Navigation in IDs
For the IDD2C transformation, the causal sequences in

an ID are represented by a notional directed PathGraph,
with a node (e.g. node a) for each interaction fragment
IFa and a directed arc (a, b) if IFa is connected by a
causal predecessor sequence to IFb. If IFa has multiple
stereotypes which are subtypes of «PaStep», then it is
treated as if it were a sequence of separate interaction frag-
ments in this order: «PaCommStep», «PaResourceAcquire»,
«PaStep», «PaResourceRelease». (It is assumed that miss-
ing stereotypes have been inserted as described in Sect. 5.2).
Interaction fragments within a combined fragment (CF) are
treated separately, and each operand gives a separate Path-
Graph. A node with no predecessor is the Start node of a
PathGraph, and a node with no successor is an End node. If
for node a, IFa is a «PaStep» with a subscenario, node a is
linked to the PathGraph for the subscenario.

Let inOrder(a) and outOrder(a)) be the number of arcs
into and out of node a, respectively. An arc (a, b) may not
have inOrder (a) > 1 and outOrder(b) > 1 at the same time.
If this occurs, then the condition is enforced by replacing arc
(a, b) by a dummy node a′ and single arcs (a, a′) and (a′, b).
Each PathGraph generates a CSM scenario.

5.2 Scenario preprocessing exceptions and special cases

Missing information
In practice users may forget to insert some annotations or
attributes. Before performing the actual transformation, a
robust transformation process should detect and report miss-
ing information, but continue on as far as possible, and pro-
vide the richest possible diagnostics. Some missing MARTE
stereotypes and attributes may simply be provided:

• many attributes of MARTE stereotypes have default values
which are used if no value is assigned;

• the «PaStep» stereotype can be assigned to those enti-
ties that may normally support it, if it is not defined (e.g.
Message, ExecutionSpecification and combined fragment
operands in IDs, Actions in ADs};

• the «ExecHost» stereotype can be assigned to any Node-
Instance or Node, and «CommHost» to any link in a DD.

Additionally, at user’s discretion, some more aggressive fill-
ins may also be desirable:

• to interpret all behaviour diagrams as AnalysisContexts
with scenarios;

• to supply a «GaWorkloadEvent» stereotype to a scenario
that lacks one, with attributes {pattern = closed (popula-
tion = 1, thinkTime = (0.0, s))}. This defines an artificial
workload that will at least provide a solvable model, which
can be corrected later;

• to supply a «PaRunTInstance» stereotype to any ID life-
line or AD partition that lacks one. The name attribute
can be assigned from the lifeline/region, and an artifi-
cial host DefaultHost can be introduced as its deploy-
ment. We have found this artifice to be useful; Default-
Host has infinite multiplicity, so it can host any number of
«PaRunTInstances» without introducing artificial conges-
tion in the resulting performance model.

Nested Behaviour in a «PaStep»
Besides a hostDemand indicating CPU execution demand,

a Step has three other attributes which (if defined) indicate
additional behaviour in the form of a nested scenario. One
is a direct reference to a nested scenario by the association
behaviour; the second is an invocation (n times) of a sce-
nario named by the attribute behavDemand with n given by
attribute behavCount; the third is the invocation (n times) of
an operation named by the attribute servDemand (which will
normally in turn have a behaviour defined by a scenario in
the Smodel), with n given by the attribute servCount.

Multiple resource demands in one «PaStep»
If more than one of the attributes hostDemand, behav-

iour, behavDemand, and servDemand is defined, then a sep-
arate Step is created in the CSM for each of them (in arbi-
trary order). The Steps created for the nested scenarios for
behavDemand and servDemand have rep set to the value:

(rep of the original «Step»)*(behavCount or servCount for
the invoked behaviour).

5.3 Transformations to CSM (IDD2C, ADD2C)

The IDD2C and ADD2C transformations are implemented
separately because the UML metamodel for interaction and
activity diagrams are very different. However, the trans-
formations follow the same high-level approach, which is

123

www.manaraa.com

Transformation challenges 1539

described in this section. The transformation begins by cre-
ating a CSM ProcessingResource, Component or Logical-
Resource for each «GaExecHost», «SchedulableResource»
or «PaLogical-Resource» respectively, and associating each
Component to a ProcessingResource. Then, the starting
points of scenarios are identified as entities with a
«WorkLoadEvent» stereotype which are also the start of a
PathGraph in an ID, or a Start node of an AD. One UML
model may contain both ADs and IDs.

One scenario is transformed at a time. The behav-
iour is traced forwards along the PathGraph (in an ID)
or following the ActivityEdges (in an AD), with PCs
inferred from the UML presentation. For an AD, the CSM
Start/End/Branch/Merge/Fork/Join PCs correspond to the
AD elements of the same type, while for an ID, they must
be inferred. For an ID, the Start is inserted before the first
Smodel entity, the End is inserted after the last, Branch/Merge
are implied by an opt or alt CF and Fork/Join are implied
by a par CF or by sending/receiving an asynchronous mes-
sage. In a CF, the operand(s) generate CSM Steps with nested
subscenarios for the operand behaviour. Nested subscenarios
are inferred from a ref CF (in an ID) or a StructuredActiv-
ityNode (in an AD).

Smodel «PaSteps» and «PaCommSteps» are translated
to CSM Steps and CommSteps with the corresponding
attributes, except where multiple CSM Steps are created, as
described above. Implicit resource acquisition and release
of process resources (e.g. threads) is inferred wherever the
behaviour crosses from a «PaStep» in one process to a
«PaStep» in another (from one lifeline to another (for an
ID), or from one ActivityPartition (swimlane) to another (for
an AD). Figure 9 shows the pseudocode for the IDD2C trans-
formation algorithm.

Figure 10 shows a screen shot of the generated CSM for
the UML GetHomePage scenario given in Fig. 4, with com-
ments showing the transformation of CFs, and indicating six
subscenarios for CF operands, which are not shown in detail.
Notice the R_Acquire and R_Release Steps to acquire and
release the process resources for the SchedulableResources,
inferred from a message from one lifeline to another.

6 CSM analysis for resource-holding and component
interactions

For an LQN Pmodel, additional properties of the CSM are
needed, which are described in this section. For other types
of Pmodel, these analyses are not required.

6.1 Logical resource context of a step

To determine the holding time of a logical resource, the oper-
ations that are carried out during its holding times must

be identified. This is done by first finding what resources
are held in executing each Step (defined as resource con-
text [43]). Resource context inconsistencies, which may be
logical errors in defining the resource use, are discussed
below.

The resource context R(S) of Step S in a CSM is an ordered
set (a stack) of logical resources held during the execution
of S, including blocked and held process threads and pure
logical resources. For a context with n resources:

R(S) = {(r1, m1), (r2, m2), ...(rn, mn)},
where resource r1 is the first one acquired, rn is the last
one acquired, and for resource ri , mi units are held at
Step S.

R is readily determined by traversing a CSM which has
been normalized and flattened, adding/removing resources
as they are acquired/released. At a Fork, the previous context
is normally passed to all successors. However, a special case
has been provided in MARTE for a parallel subpath which
has a resource like a lock or buffer explicitly passed into it:
the first Step has a «PaResPassStep» stereotype, which leads
to a ResourcePass entity in the CSM. The identified resource
then enters the context only in the one subpath. In the special
case of a parallel subpath resulting from an asynchronous
message, only explicitly passed resources enter the context.

Resource context inconsistencies
Context inconsistency at a Merge. Before a Merge PC, the

contexts may be different, giving a resource context incon-
sistency. This can occur in a specification, but represents bad
practice. For example, suppose a certain condition gives a
branch path in which a buffer is obtained, and the same con-
dition gives a later distinct branch path in which it is filled,
used and released. If the buffer is accessed between these
branches, there will be an error in the cases where it has not
previously been obtained. Our solution is to abort the trans-
formation and treat the inconsistency as a specification error.
The Smodel can be corrected by extending the alternative
paths to cover both branches, or by obtaining the buffer just
before using it.

Resources in Parallel Subpaths. Parallel subpaths inherit
the resource context from before the fork. This creates con-
sistency questions if a subpath releases a resource; do the
other subpaths retain it, or not? If they also release it, are
two units released? To resolve this question, one subpath is
chosen as the “owner” of the resource, and only this sub-
path can release it (the other subpaths, however, retain it in
their contexts). Passing a resource to one subpath explicitly
designates its owner.

Non-deterministic order of some resources at a Join:
Resources obtained on different subpaths are not ordered
among themselves. When one of these resources is released,
its holding time is arbitrarily determined to be nested (see

123

www.manaraa.com

1540 M. Woodside et al.

Fig. 9 IDD2C transformation algorithm

below) unless the determined part of the resource order con-
tradicts it.

Non-determinism of resource context due to nested sce-
narios: A subscenario that is nested in a Step can mod-
ify the resource context due to probabilistic behaviour in
the subscenario. Thus, it is preferred that a nested scenario
should release any logical resources that it acquires, so it
ends with the same resource context that it starts with. With-
out this “well-structured resource usage,” the transformation
is aborted.

6.2 Nesting of holding times and ordered use of resources

Whenever resources are released in the reverse order to which
they were acquired, their holding times are nested (each
resource holding time is contained within the holding times
of resources acquired earlier and released later). Full nest-
ing also has a global ordering of resources that is respected
by all resource acquisitions, and guarantees freedom from
resource deadlock. Thus, full nesting may be regarded as
a “well-structured” resource discipline, although it is often

123

www.manaraa.com

Transformation challenges 1541

Fig. 10 CSM for the
GetHomePage scenario,
excluding resources. (The CSM
on the left is a screenshot from
the tool, which uses different
presentation conventions from
Fig. 7. Arrows represent
Sequence PCs except for those
surrounding
Branch/Merge/Fork/Join/Start/
End PCs, which just indicate
associations)

not the case in correct software. For example, when a buffer
manager returns a buffer, the holding time of the buffer is not
nested in the holding time of the manager process.

Full nesting also corresponds to layering of resource
queues in LQN. However, even without it, a correct LQN
model can be constructed and solved. The algorithm for gen-
erating LQN models detects full nesting as a standard simple
case and accommodates exceptions either as “second phases”
of a service time which gives analytical solutions [10–12],
or by using a special resource-token task (which requires
simulation for solving the model).

6.3 Discovering calls between components

Wherever the CSM makes a transition between Components,
there is implicitly a message passed (there may or may not

be an explicit message description attached to a CommStep).
An important feature of LQN is its ability to estimate the
performance effect of blocking calls, in which the caller waits
for a reply. A blocking call/reply pair of messages is identified
where:

• the message is explicitly identified by attributes in the
CSM;

• the scenario transfers from one Component to another, with
a given prior R(S), and later returns to the first Component,
with the identical R(S), and there is no parallel subpath
between these points defining nonzero execution by the
sending Component.

An advanced LQN feature that arises in real software is a
forwarded request, in which a sequence of messages traverses
several tasks, ending with a reply back to the originating task,

123

www.manaraa.com

1542 M. Woodside et al.

AsyncCall

SyncCall

package LQNmetamodel

-thinkTime : float = 0.0
-hostDemand : float
-hostDemCV : float = 1.0
-deterministicFlag : Integer = 0
-repetitionsForLoop : float = 1.0
-probForBranch : float = 1.0
-replyFwdFlag : Boolean

Activity

-multiplicity : Integer = 1
-priorityOnHost : Integer = 1
-schedulerType

Task
-meanCount ...

Call

-probForward

Forward

-replyFlag = true
-successor.after = phase2...

Phase1

-multiplicity : Integer = 1
-schedulerType

Processor

Entry

-replyFlag = False
-successor = NIL

Phase2

Precedence

Sequence

Branch

Merge

Fork

Join

-actSetForTask

0..*

0..1
-callByActivity

0..*

1

-fwdToEntry
1

-fwdTo
1

-fwdByEntry
0..*

1

-callToEntry
1

-callTo
1

-actSetForEntry

0..*

0..1

-successor
1

1..*

-predecessor
1

-after1..*

0..1

-replyTo 0..*

-firstActivity 1

1

-allocatedTask 0..*

-host 1

-taskOperation 1..*

-schedulableProcess 1

-before

-fwdBy

SyncCall

AsyncCall

Fig. 11 Simplified LQN metamodel

again with no parallel subpath defining nonzero execution by
the sending Component.

Messages are thus categorized as part of blocking call/
replies or of forwarding chains, or as asynchronous (the
remainder).

7 Transformation from CSM to LQN (C2LQN)

The types of Pmodels used involve different approxima-
tions to the behaviour and to contention management, which
should be considered by the user but are outside the present
scope. The viewpoint of PUMA is that a user should be free
to use the performance formalism of their choice, perhaps
the one they are most used to, or with available tooling. This
paper focuses on transformations from CSM to two Pmod-
els: LQN presented in this section and Generalized Stochas-
tic Petri Nets (GSPNs) in Sect. 8. These two PModels dif-
fer greatly in the way they model resources and how the
resources are used by the behaviour, so each section concen-
trates on the nature of the challenges that had to be addressed
for the particular transformation.

Whereas the CSM is a kind of projection of the Smodel
extended with MARTE annotations, the Pmodel is formu-

lated in different terms altogether (a large semantic gap). In
particular, resources, which are a small part of the Smodel,
are central to the Pmodel.

7.1 LQN Pmodel and Metamodel

The LQN model [11,12] is a form of extended QN par-
ticularly designed to represent software systems. A simpli-
fied LQN metamodel is shown in Fig. 11, and the concepts
are illustrated by the example in Table 4 below. Software
resources (e.g. process thread pools) are represented as Tasks
(in the graphical notation, the bold rectangles labelled by the
thread pool size) each providing a set of operations called
Entries (shown as attached rectangles). Each task has a host
Processor (shown as an oval). The detailed execution of
an entry is described by Activities (a graph of small rec-
tangles inside the task), with the same precedence relation-
ships as CSM. For each entry, there is a firstActivity to begin
the execution and a replyFwdActivity to send a reply to the
caller, or to forward the request to another entry. An Activ-
ity has execution attributes similar to CSM steps: processing
demand, loop repetition, branching probability, and calls for
other operations. Calls are shown as arrows from an activity
to an entry, labelled with the mean number of requests. A

123

www.manaraa.com

Transformation challenges 1543

Table 4 C2LQN transformation algorithm: from CSM to LQN

1 Optionally bind aspects, then flatten and normalize the CSM

2 Find and remove simple cycles; stop if there are complex cycles

3 Find the resource context R(S) of each Step S, (Sect. 6.1)

4 Traverse the CSM and discover blocking calling interactions
and other (asynchronous) calls

5 Create an LQN processor for each CSM ProcessingResource,
and an LQN Task from each CSM Component, with
corresponding multiplicities

6 For a closed workload definition create a task with multiplicity
representing the number of users and an entry with the think
time; for an open workload the arrival rate is attached to an
entry created for the first Step as in step 7

7 Create calls and entries recursively starting from the Workload
tasks; for each call a target entry with a first Activity is
created on the task indicated by the first Step of the call (one
entry per call). By construction, blocking calls always return
to the same entry that made the call. The call frequency is the
product (repetitions* probability) of the first Step of the call

8 Create LQN Activities to represent the entry internals from the
sequence of additional Steps for the call. The Activities
simply copy the CSM Steps and PCs, and where a nested call
is discovered, an Activity is created to make it

Call may be blocking (the caller waits for a reply, indicated
by a solid arrowhead), asynchronous (no reply) or forward-
ing (after providing an operation, the receiver forwards the
request to another task entry). An operation may be exe-
cuted in two phases, with the second phase following the
reply.

Service requests may be produce a chain of tasks wait-
ing for replies; this chain is called resource context of an
operation, and the operation duration is part of the service
time of each blocked task in the calling chain. Pure logical
resources are also modelled as tasks. An LQN model can be
solved either with the numerical solver LQNS [11] or by a
simulator.

7.2 C2LQN transformation details

A high-level description of the transformation algorithm
from CSM to LQN is given in Table 4.

The implemented CSM-to-LQN transformation begins by
generating a LQN Task or Host for each CSM Component
or ProcessingResource, and a userTask for each Workload
of each top-level scenario, with the given population and
thinkTime for closed workloads. For open workloads, the user
task has a given arrivalRate, an infinite population and zero
thinkTime.

The scenarios are normalized and flattened as described
in Sect. 4. In [44], the concept of subscenario was enlarged
to include aspects, defined as a kind of parameterized sub-

scenario with roles and role bindings. Aspect subscenarios
are bound into the CSM using the approach of [44], before
flattening, and then treated as normal subscenarios.

CSM cycles constructed with Branch/Merge are reduced
to subscenarios nested in a repeated Step. This is always
possible if the loops are structured (that is, fully nested
within each other, as provided by structured programming
languages). Structured loops that start with a Merge and end
at a Branch back to the Merge are found by inspection and
reduced, until no structured loop can be found; if there is still
a cycle, an LQN cannot be produced.

Starting from the CSM top-level scenario Start points, and
from the LQN User tasks, for each inferred message that is
not a reply there is a Call created to a target Entry (call it entry
E) created in the task corresponding to the target Component
of the message (call it task T). The Call frequency is the
product of the repetition attribute of the last Step before the
call, and the probability attribute of the first Step after. If
theCall is in a forwarding chain, its forwarding probability
is set to unity. From the first Step, after the message, the first
Activity is created in the entry E.

Subsequent Steps and PCs (until the next message) gen-
erate activity graph entities in the task T which mirror one-
to-one the CSM entities. When a message is detected, an
Activity A is created in task T to be its sender, and (if the
message is not asynchronous) the traversal of the CSM pro-
ceeds to the next Component; eventually, it will return with a
reply message and further LQN additions will continue from
Activity A. If the message from A is asynchronous, there is
a fork before A and one subpath continues in task T, while
the other subpath proceeds along the message to the next
Component.

7.3 LQN Pmodel as assembly of multiple scenarios

Figure 12 shows the LQN model obtained by applying the
algorithm to the GetHomePage scenario in Fig. 4. An LQN
task is generated for each concurrent component correspond-
ing to the lifeline roles stereotyped «PaRunTInstance». Note
that four LQN tasks in Fig. 12 correspond to the lifeline
roles from Fig. 4, while the fifth LQN task, PromoProc, cor-
responds to a lifeline role inside the tworefCFs, Promotion
1 and 2. Each task has one or more entries and for each entry,
the first activity is shown within the entry rectangle. The
graph of additional activities (if any) is shown in a shaded
rectangle attached to the task.

Real systems include several scenarios for different
responses, modelled in separate behaviour diagrams, and
they are converted separately. TPC-W for example defines
14 scenarios, with a fraction of requests being directed to
each one [38]. These scenarios share common resources and
may have a performance impact on each other.

123

www.manaraa.com

1544 M. Woodside et al.

Fig. 12 LQN model for the
GetHomePage scenario

To cover the usage profile, the Pmodels for all the scenarios
should be combined into a single Pmodel. In LQN for a closed
workload, the User tasks can be combined together, using the
request fractions to derive a weighted average think time and
the probability of requesting each scenario; then, the LQN
models found separately are attached to these requests. Each
task collects together its entries that were found from the
separate scenarios.

This approach was used to model 10 of the 14 scenarios in
TPC-W, with the same software components and deployment
as shown in Fig 5, giving the LQN Pmodel shown in Fig. 13
in a simplified form without parameters and processors. The
LoadGenerator task chooses the scenario in the proportions
defined in [38], and drives the Browser task (called here EB)
with an entry corresponding to each of the 10 scenarios. It
would be a long and error-prone process to produce such a
large model manually.

To provide an illustration of the end-to-end application of
a Pmodel, experiments were performed on the LQN shown
in Fig. 13 for different numbers of users (Nusers from 1 to

2,000). The LQN solver solves this model in less than one
second. Some model results are shown in Fig. 14. The first
case with single processors, single-threaded tasks, an exter-
nal user delay (think time) of 7 s, and up to 2,000 users gives
the curves for high response times and low throughputs in the
two graphs. Examination showed that WebServer saturation
limited the throughput to about 23 responses/second and a
capacity of about 30 users (for the desired 1-s mean response
time), which was unsatisfactory. An improved “base” case
was defined with 10 WebServer threads, 2 DB threads and 2
DB processors, giving the other curves (lower response time,
higher throughputs, and a capacity of about 1,200 users). The
additional concurrency gave a satisfactory solution.

A deeper use of the model is to evaluate design changes
such as execution in parallel, replication, modified concur-
rency, and reduced demands and delays. The results evaluate
the potential of these changes, which can then be mapped to
possible software solutions [36,45]. The choice of the great-
est performance improvement for the smallest cost or effort
is finally made by the designer.

123

www.manaraa.com

Transformation challenges 1545

Fig. 13 The LQN model created by merging submodels for ten TPC-W scenarios

Response time vs. # of users

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500

of users

R
es

p
o

n
se

t
ti

m
e

(s
)

Preliminary Case Base Case

Throughput vs. # of users

0
20
40
60
80

100
120
140
160
180
200

0 500 1000 1500 2000 2500

of users
T

h
ro

u
g

h
p

u
t

(/
s)

Preliminary Case Base Case

Fig. 14 Results for the “preliminary case” with limited concurrency, and the improved “base case”

Fig. 15 LGSPN patterns for a step

8 Transformation from CSM to Stochastic Petri Nets
(C2PN)

This section presents the transformation from CSM to Sto-
chastic Petri nets and illustrates it with an example of bioin-
formatics workflow model.

8.1 Transformation approach

Petri net models can represent complex logic, which is impos-
sible in queueing models. They represent system state by
tokens in places, and model behaviour by transitions which
fire and move tokens from place to place. Time delays are

modelled in Generalized Stochastic Petri Nets (GSPNs) [37]
by stochastic firing delays. An algorithm has been created for
Labelled GSPNs in which subnets are composed based on
labels attached to places and transitions [4,5,37]. The GSPN
model must be solved by generating its state space, and its
main disadvantage is state explosion in the solver. Petri net
tools can also carry a variety of correctness analysis, which
are beyond the scope of this work.

8.2 Patterns for translation

The algorithm is based on subnets, illustrated in Fig. 15,
for translating a Step. Places and transitions are labelled as

123

www.manaraa.com

1546 M. Woodside et al.

(a)

(b)

(c)

Fig. 16 LGSPN patterns for sequence, and for composing it

“patternName|CSMName”. Part (a) shows the subnet for a
simple Step, part (b) includes a probability of execution with
the additional transition t1, (c) shows a preceding multiway
branch, and (d) shows repetition.

Figure 16 shows the sequential composition of two Steps
s1 and s2. Part (a) is the CSM, (b) the subnets for the two
Steps and the Sequence PathConnector, and (c) the compo-
sition in LGSPN terms, based on labels t1|s1 and p2|s2. The
patterns for the Branch, Merge, Fork and Join are similar.
A Start PathConnector for a closed workload gives a pat-
tern that cycles tokens from the end of a response back to
the beginning, after the external delay. Open workloads give
infinite state spaces and are not modelled.

Each resource subnet has a place with tokens equal to its
multiplicity, and transitions for each requester to allocate and
de-allocate tokens. It is composed with patterns representing

Fig. 17 Annotated activity diagram for the GPGE workflow

123

www.manaraa.com

Transformation challenges 1547

acquisition and release. Processor resources are handled in
the same way, by introducing acquisition and release transi-
tions before and after each Step.

The translation algorithm first creates a LGSPN pattern
subnet for every CSM element. Then, it composes Steps with
their host resources, and resources with acquisition/release.
Finally, it composes subnets for Start, End and Sequence,
followed by other PathConnectors.

8.3 Workflow case study

Petri nets can capture well-workflow models, which can
fork/join or branch/merge concurrent branches at will. We
have chosen as an example a real workflow model from bioin-
formatics, found at the archive website myExperiment [13].
The workflow represents the computation of “Get Pathway-
Genes by Entrez gene id” (GPGE). Given a specific “entrez”
gene id, GPGE returns the set of pathways that this gene par-
ticipates in, a pathway map, and the genes associated with
each pathway.

The workflow model is represented as a UML activity dia-
gram with MARTE annotations in Fig. 17. The activities are
stereotyped as PaStep; the ones with white background are
executed by the Taverna workflow engine at the user’s site,
while five activities shown in grey are executed by external
web services. These five PaSteps were identified as exter-
nal operations with the attribute extOpDemand (with a count
of 1, not shown).

The stereotype «GaAnalysisContext» identifies the AD
as a subject for performance analysis and its contextParams
attribute declares five parameters which correspond to the
external services delays. A closed workload with a popu-
lation of 1 and zero think time is associated to the Start
node corresponds to repeated executions of the workflow,
one at a time. The transformation to CSM and then to GSPN
had the results shown in Figs. 18 and 19. The sequences of
steps in the workflow can easily be traced in each of these
models.

The GSPN model was validated against measurements, in
order to see how effective it is in predicting the end-to-end

Fig. 18 CSM model of the
GPGE workflow

123

www.manaraa.com

1548 M. Woodside et al.

Fig. 19 GSPN Pmodel for the
GPGE workflow

delay. The workflow computation was executed and mea-
sured, with some tens of executions five times-of-day, at
times labelled T1 to T5. The average delay found for each
step in the workflow is shown in Table 5. Clearly, the mean
values varied greatly with the time of day. The delays for all
the workflow steps are given in Table 5.

The measured step delays were inserted in the GSPN
model as the average delay to fire the transitions correspond-

ing to the external services. The model was solved for each
of the five times-of-day. The results in Table 6 show that
the error was always less than 10 %. Given that the exter-
nal web services used had other unknown workloads, that
we knew only their mean delay but not the distribution
and that we approximated each delay with exponentially
distributed transitions in GSPN, the results are reasonably
good.

123

www.manaraa.com

Transformation challenges 1549

Table 5 Average workflow
operation times and end-to-end
delays at five different
times-of-day

Web service or local activity T1 T2 T3 T4 T5

add ncbi to string 111 1700 42 96 75

convertToKEGGid 1.000 1400 982 1100 1300

splitOnTab 14 2000 1 15 21

splitAndSendOnlyKEGGgeneID 74 116 50 94 48

splitOnNewLine 33 1.900 1 35 3

lister 72 84 52 78 60

get_pathways_by_genes 997 1000 897 1000 931

get_genes_by_path_way 1100 1000 918 1100 946

separators_value 21 1900 1 7 2

colour_pathway_by_objects 1800 1700 1700 1800 1500

getPathwayDescription 972 983 867 923 894

Clean_List_of_Strings_by_separator 520 450 108 340 92

Get_image_from_URL 1700 1800 2100 1400 1700

End-to-end workflow delay 7800 11600 8800 7400 9900

Table 6 Prediction error of the GSPN model

Response time (second)

Real system (average) 7.8 11.6 8.8 7.4 9.9

GSPN model

(prediction) 8.16 10.98 8.14 7.22 9.12

% Prediction error 4.41 % −5.56 % −8.11 % −2.49 % −8.55 %

9 Conclusions

The PUMA transformations have successfully automated
the creation of the types of Pmodel described here (LQN
or GSPN) from a UML Smodel and the information in its
MARTE annotations, for systems with statistical workloads
and performance measures. PUMA can do what a perfor-
mance specialist would do with the same information; user
judgment is still required in determining the annotations and
the choice of Pmodel. The transformations can claim a useful
level of “completeness” in covering the problem of building
a Pmodel because

• the CSM captures and PUMA uses all the information in
the Smodel and the annotations which is relevant to Pmod-
els for these systems (with a few exceptions noted below),
and

• the transformations then extract from the CSM all the prop-
erties that can be applied in building the target Pmodel.

Some useful properties in the MARTE annotations are not yet
included in CSM (such as Step priority and arrival patterns
other than open and closed); however, extensions to CSM
are planned to cover these and pose no difficulty. Many other
properties in MARTE are less useful for the class of systems
with stochastic timing properties that we model; such exam-

ples are discrete-time clocked behaviour, time-bounded non-
deterministic hostDemands, host clock overhead, and many
detailed properties for describing operating systems and sys-
tems on chip. These are not planned for inclusion.

Performance modelling transformations like PUMA are
unusual in that they transform between quite different seman-
tic domains, with different levels of abstraction. The differ-
ences have been described in some detail in the context of
each stage of the transformations. A second aspect which
is not common in software transformation is the need to
analyse extensive CSM properties to identify types of mes-
saging interactions between components, and relationships
between resource holding times (the analysis in Sect. 6).

The transformation scalability is good. The complexity of
the transformations is dominated by the cost of traversing
the Smodel and the CSM, which is linear in the number N of
CSM Steps in a single top-level scenario (or the number of
annotated elements in the Smodel scenario, which is roughly
proportional to N). So the complexity of S2C transformations
is O(PN) where P is the number of scenarios in the usage
profile and N the number of steps in a scenario, which means
it is linear in the number of Steps in the Smodel.

The analysis of the CSM described in Sect. 6, which is
needed for creating the LQN Pmodel, flags some cases that
cannot be handled. These are not shortcomings of PUMA,
but warnings of possible problems in the Smodel. One of
these, non-deterministic resource contexts, is due to a part
of a scenario where some resource may or may not be allo-
cated to the process, depending on its history, and may lead
to resource allocation errors or deadlocks. A second case,
dubious causality, is due to a limitation in UML in identi-
fying causality in alt CFs. The third case, called unstruc-
tured loops, is simply due to a limitation of LQN in mod-
elling looping behaviour; some other Pmodel types can be
applied instead. However, unstructured loops are essentially

123

www.manaraa.com

1550 M. Woodside et al.

the “goto” behaviour that was eliminated by structured pro-
gramming long ago, and perhaps, they should be eliminated
in these cases too.

The key to real progress in software performance engi-
neering lies in the more intelligent use of performance models
[36], by themselves and in combination with measurements
[40]. Practical automation of performance model-building as
achieved by PUMA is an important step towards this goal.

Acknowledgments This research was supported by grants from
NSERC, the Natural Sciences and Engineering Research Council of
Canada, through its Discovery and Strategic Projects programs.

References

1. Balsamo, S., Marzolla, M.: Simulation modeling of UML software
architectures. In: Proceedings of the ESM’03, Nottingham, UK,
June 2003

2. Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based
performance prediction in software development. IEEE Trans.
Softw. Eng. 30(5), 295–310 (2004)

3. Becker, S., Koziolek, H., Reussner, R.: The Palladio component
model for model-driven performance prediction. J. Syst. Softw.
82(1), 3–22 (2009)

4. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence
diagrams and statecharts to analysable Petri net models. In: Pro-
ceedings of the 3rd International Workshop on Software and Per-
formance, Rome, July 2002, pp. 35–45

5. Bernardi, S., Merseguer, J.: Performance evaluation of UML design
with stochastic well-formed nets. J. Syst. Softw. 80(11), 1843–1865
(2007)

6. Cavenet, C., Gilmore, S., Hillston, J., Kloul, L., Stevens, P.:
Analysing UML 2.0 activity diagrams in the software performance
engineering process. In: Proceedings of the 4th International Work-
shop on Software and Performance, Redwood City, CA, Jan 2004,
pp. 74–83

7. Cortellessa, V., Mirandola, R.: Deriving a queueing network based
performance model from UML diagrams. In: Proceedings of the
Second International Workshop on Software and Performance,
Ottawa, Sept. 17–20, pp. 58–70 (2000)

8. Cortellessa, V., Di Marco, A., Inverardi, P.: Model-Based Software
Performance Analysis. Springer, Berlin (2011)

9. DiStefano, S., Scarpa, M., Puliafito, A.: From UML to petri nets: the
PCM-based methodology. IEEE Trans Softw. Eng. doi:10.1109/
TSE.2010.10 12, Jan 2010

10. Franks, G., Petriu, Dorina, Woodside, M., Xu, J., Tregunno, P.:
Layered bottlenecks and their mitigation. In: Proceedings of the
International Conference on Quantitative Evaluation of Systems,
Riverside, CA, Sept 2006

11. Franks, G., Woodside, M.: Multiclass multiservers with deferred
operations in layered queueing networks, with software system
applications. In: Proceedings of the 12th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecom-
munications Systems (MASCOTS, 2004), pp. 239–248, Volendam,
The Netherlands, Oct 2004

12. Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.:
Enhanced modeling and solution of layered queueing networks.
IEEE Trans. Softw. Eng. 35(2), 148–161 (2009)

13. Goble, C.A., et al.: Myexperiment: a repository and social net-
work for the sharing of bioinformatics workflows. Nucleic Acids
Research 38 (suppl 2) (2010). See also http://www.myexperiment.
org/workflows/

14. Grassi, V., Mirandola, R., Sabetta, A.: From design to analysis
models: a kernel language for performance and reliability analysis
of component-based systems. In: Proceedings of the 5th Interna-
tional Workshop on Software and Performance, pp. 25–36, Palma,
Spain, July 2005

15. International Standards Organization, Software and System Engi-
neering: High-level Petri nets-Part 1: concepts, definitions and
graphical notation. ISO/IEC document 15909–1 (2004)

16. Jain, R.: The Art of Computer Systems Performance Analysis.
Wiley, New York (1991)

17. Jansen, D., Hermanns, H.: QoS modeling with UML statecharts.
Proc. ACM Sigmetrics 32, 28–33 (2005)

18. Kahkipuro, P.: UML based performance modeling framework for
object oriented systems. In: UML99, The Unified Modeling Lan-
guage, Beyond the Standard, LNCS 1723, pp. 356–371, Springer
(1999)

19. Khan, R.H., Heegaard, P.E.: Translation from UML to Markov
model: a performance modeling framework for managing behav-
ior of multiple collaborative sessions and instances. In: 3rd IEEE
International Conference on Computer Science and Information
Technology (ICCSIT), pp. 677–686 (2010)

20. López-Grao, J.P., Merseguer, J., Campos, J.: From UML activ-
ity diagrams to Stochastic Petri Nets. In: Proceedings of the 4th
International Workshop on Software and Performance, pp. 25–36,
Redwood City, CA, Jan. 2004

21. Marzolla, M., Balsamo, S.: UML-PSI: the UML performance sim-
ulator. In: Proceedings of the First International Conference on
the Quantitative Evaluation of Systems (QEST’04), Enschede,
pp. 340–341 (2004)

22. Menasce, D., Gomaa, H.: A method for design and performance
modeling of client/server systems. IEEE Trans. Softw. Eng. 26(11),
1066–1085 (2000)

23. Merseguer, J.: Software performance engineering based on UML
and Petri nets. Ph.D. thesis, University of Zaragoza, Spain, March
2003

24. Object Management Group. UML Profile for MARTE Modeling
and Analysis of Real-Time and Embedded Systems, Version 1.0,
OMG doc. formal/2009-11-02, Dec 2009

25. Object Management Group. Unified Modeling Language (UML),
v2.3—Superstructure, document formal/10-05-05, May 2005

26. Object Management Group: UML profile for schedulability, per-
formance, and time specification, version 1.1, OMG document
formal/05-01-02, Jan 2005

27. Petriu, D.C., Gu, G.: From UML to LQN by XML algebra-based
model transformations. In: Proceedings of the 5th ACM Int Work-
shop on Software and Performance (WOSP 05), pp. 99–110, Palma,
June (2005)

28. Petriu, D.C., Sabetta, A.: From UML to performance analysis mod-
els by abstraction-raising transformation. In: Babau, J.P., Cham-
peau, J., Gerard, S. (eds.) From MDD Concepts to Experiments
and Illustrations, pp. 53–70, ISTE Ltd. (2006)

29. Petriu, D.C., Shen, H.: Applying the UML performance profile:
graph grammar-based derivation of LQN models from UML spec-
ifications. In: Proceedings of the 12th International Conference on
Modeling Tools and Techniques for Computer and Communication
System Performance Evaluation, London, England (2002)

30. Petriu, D.B., Woodside, C.M.: An intermediate metamodel with
scenarios and resources for generating performance models from
UML designs. Softw. Syst. Model. 6(2), 163–184 (2007)

31. PUMA project web page http://sce.carleton.ca/rads/puma
32. Sibertin-Blanc, C., Hameurlain, N., Tahir, O.: Ambiguity and struc-

tural properties of basic sequence diagrams. 4(3), 275–284 (2008)
33. Smith, C.U., Lladó, C.M.: Performance model interchange format

(PMIF 2.0). In: Proceedings of the QEST 2004 (First International
Conference on Quantitative Evaluation of Systems) Enschede, Sept
2004

123

http://dx.doi.org/10.1109/TSE.2010.10
http://dx.doi.org/10.1109/TSE.2010.10
http://www.myexperiment.org/workflows/
http://www.myexperiment.org/workflows/
http://sce.carleton.ca/rads/puma

www.manaraa.com

Transformation challenges 1551

34. Smith, C.U., Williams, L.G.: Software performance AntiPatterns.
International CMG Conference, pp 797–806, Dec 2001

35. Smith, C.U.: Introduction to software performance engineering:
origins and outstanding problems. In: International Summer School
on Formal Methods for Performance Evaluation, pp. 395–428,
Bertinoro, Springer (2007)

36. Smith, C.U., Williams, L.G.: Performance Solutions. Addison-
Wesley, Boston (2002)

37. The GreatSPN tool. Available at http://www.di.unito.it/~greatspn
38. Transaction Processing Council: TPC Benchmark W (Web Com-

merce) Specification, Version 1.8 (2002)
39. Tribastone, M., Gilmore, S.: Automatic translation of UML

sequence diagrams into PEPA models. In: Proceedings of 5th Inter-
national Conference on Quantitative Evaluation of Systems (QEST
2008), pp. 205–214, St Malo, France (2008)

40. Woodside, M., Franks, G., Petriu, D.C.: The future of software
performance engineering. In: Proceedings of the Future of Software
Engineering 2007, pp 171–187, IEEE Computer Society, May 2007

41. Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T.,
Merseguer, J.: Performance by unified model analysis (PUMA).
In: Proceedings of the 5th International Workshop on Software
and Performance (WOSP’2005), pp. 1–12, Palma de Mallorca,
July 2005

42. Woodside, M., Petriu, D.B., Siddiqui, K.H.: Performance-related
completions for software specifications. In: Proceedings of the 24th
International Conference on Software Engineering, May (2002)

43. Woodside, M.: Software resource architecture. Int. J. Softw. Eng.
Knowl. Eng. (IJSEKE) 11(4), 407–429 (2001)

44. Woodside, M., Petriu, D.C., Petriu, D.B., Xu, J., Israr, T., Georg, G.,
France, R., Bieman, J.M., Houmb, S.H., Jurjens, J.: Performance
analysis of security aspects by weaving scenarios from UML mod-
els. J. Syst. Softw. 82(1), 56–74 (2009)

45. Xu, J.: Rule-based automatic software performance diagnosis and
improvement. Perform. Eval. 67(8), 585–611 (2010)

46. Zeng, Y.X.: Transforming Use Case Maps to the Core Scenario
Model Representation. MASc thesis, University of Ottawa, May
(2005)

Author Biographies

Murray Woodside does research
in all aspects of performance and
dependability of software. Much
of this work is based on a special
form of queueing analysis called
layered queueing (also known
as “active servers”) which he
and his co-workers have applied
to distributed systems of many
kinds. This analysis supports
software engineering through the
concept of resource architec-
tures, and performance engineer-
ing in general. He received the
PhD degree in Control Engineer-

ing from Cambridge University, England, and has taught and done
research in stochastic control, optimization, queuing theory, perfor-
mance modelling of communications and computer systems, and soft-
ware performance. He taught at Carleton University in Ottawa until
his recent retirement, and now continues research and teaching with an
appointment as Distinguished Research Professor. He is an Associate
Editor of the IEEE Transactions on Software Engineering. In the period
1995–1999, he was Vice-Chair and Chair of Sigmetrics, the ACM Spe-
cial Interest Group on performance. He is a Fellow of IEEE.

Dorina C. Petriu is a full
professor in the Department of
Systems and Computer Engi-
neering at Carleton University,
Ottawa, ON, Canada. Her main
research interests are in the
areas of software performance
and dependability modelling and
model-driven development, with
emphasis on integrating the
analysis of non-functional prop-
erties into the software develop-
ment process. She served in the
steering and programme com-
mittees of numerous interna-

tional conferences and workshops. Dr. Petriu is a Fellow of the Canadian
Academy of Engineering and of the Engineering Institute of Canada,
senior member of IEEE and member of ACM.

José Merseguer received BS
and MS degrees in computer
science and software engineer-
ing from the Technical Univer-
sity of Valencia, and a PhD
degree in computer science from
the University of Zaragoza. He
is currently the Director of the
Master in Computer Science
and Systems Engineering at the
University of Zaragoza, Spain.
He teaches software engineering
courses at graduate and under-
graduate levels at the University
of Zaragoza. Dr. Merseguer has

developed postdoctoral research with Prof. Murray Woodside at Car-
leton University, Ottawa, Canada, and with Prof. Robyn Lutz at Iowa
State University, USA. He has also been a Visiting Researcher at the
Universities of Torino and Cagliari in Italy, and Politecnico di Milano,
Italy. His main research interests include performance and dependabil-
ity analysis of software systems, UML semantics, and service-oriented
software engineering. Dr. Merseguer has been serving as a referee for
international journals and as a programme committee member for sev-
eral international conferences and workshops. He is programme co-
chair for ICPE’14. He is also co-author of the book “Model-driven
Dependability Assessment of Software Systems” by Springer.

Dorin B. Petriu holds Bach-
elor’s and Master’s degrees in
computer system engineering
from Carleton University, Ottawa.
Dorin is completing his doctoral
programme part-time while he
works as a policy analyst at the
Office of the Commissioner of
Lobbying of Canada and bicycles
around Ottawa, Canada. Dorin’s
research interests are modelling
and automatic model transforma-
tions.

123

http://www.di.unito.it/~greatspn

www.manaraa.com

1552 M. Woodside et al.

Mohammad Alhaj received
the B.Sc. degree in Electri-
cal Engineering from Univer-
sity of Jordan, Amman, Jordan,
in 1994, the M.A.Sc. degree
in System and Computer Engi-
neering - Software Engineer-
ing from Carleton University,
Ottawa, Canada, in 2008. He
is currently working towards
the PhD degree in System and
Computer Engineering at Car-
leton University. His research
interests include software perfor-
mance engineering, performance

models (queuing networks and extensions), model-driven development
(UML) and model transformations. His current research topic is focused
on performance analysis of Service-Oriented Architecture (SOA) sys-
tems using model-driven SOA.

123

www.manaraa.com

Copyright of Software & Systems Modeling is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	Transformation challenges: from software models to performance models
	Abstract
	1 Introduction
	2 Related work
	3 Bridging the semantic gap between Smodel and Pmodel
	3.1 MARTE performance annotations

	4 Intermediate modelling language: The Core Scenario Model
	5 Transformation from Smodel to Core Scenario Model (S2C)
	5.1 Causality and sequence in a UML ID
	5.2 Scenario preprocessing exceptions and special cases
	5.3 Transformations to CSM (IDD2C, ADD2C)

	6 CSM analysis for resource-holding and component interactions
	6.1 Logical resource context of a step
	6.2 Nesting of holding times and ordered use of resources
	6.3 Discovering calls between components

	7 Transformation from CSM to LQN (C2LQN)
	7.1 LQN Pmodel and Metamodel
	7.2 C2LQN transformation details
	7.3 LQN Pmodel as assembly of multiple scenarios

	8 Transformation from CSM to Stochastic Petri Nets (C2PN)
	8.1 Transformation approach
	8.2 Patterns for translation
	8.3 Workflow case study

	9 Conclusions
	Acknowledgments
	References
	Author Biographies

